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ABSTRACT 
//%a 

This paper deals with one (1) aspect of the problem associated with steering 
a narrow-beam LASER for communications between a planetary deep-space ve- 
hicle and an earth ground station or  relay station. The area investigated is that 
of spacial beam offset. 

The introduction is a fundamental discussion of the astronomy of our solar 
system and is presented in order that an appreciation of the distance from earth 
to the other planets can be obtained. 

Section I presents a derivation of optical refraction using Snell's Law. Ex- 
pressions a r e  given for the amplitude and phase of light that has undergone 
refraction through a medium of known thickness and known index of refraction. 

Section I1 gives a classical derivation of the retarded vector potential and 
is presented as a foundation for the work in Section III. In addition, the radia- 
tion vectors as derived by Scknelknoff are defined and the phase term is dis- 
cussed in light of the problem under discussion. 

Section 111 presents the theory underlying Spacial Beam Offset and an ex- 
pression is developed that expresses the amount of offset required. For deep 
ranges, it is shown that the amount of spacial beam offset required does not 
depend on range, but depends only on the velocity of the spacecraft, aspect angle, 
and beamwidth of the LASER. This derivation neglects the effect of the atmos- 
phere and considers only the propagation time effects. 

The implication of this paper is that under certain geometry, a LASER 
would not communicate in real  time angle with a deep-space vehicle. A narrow- 
beam LASER would have to be positioned ahead or behind the vehicle at the time 
of transmission in order to insure that the maximum of the LASER far-field 
pattern intersects the spacecraft for a n  optimum communications link. P 
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EFFECTS OF PROPAGATION TIMES ON THE STEERING OF A 
NARROW-BEAM LASER TO A DEEP-SPACE VEHICLE 

INT ROD UCTION 

Man's curiosity insures that the moon will only be a stepping stone in the 
conquest of'knowledge concerning our solar system. A manned mission to the 
moon is the easiest conquest that can be made outside of the Earth's gravitational 
field. Most certainly, once this mission i s  completed, systems for taking us  to 
one of the nearby planets will be off of the drawing boards and in the design 
stage. In order to understand the problems involved in a manned mission to  
one of the planets in our solar system, it is necessary to consider the motions 
of the other planets relative to  the sun. 

The solar system consists mostly of empty space and what material it does 
contain belongs primarily to the sun. This material consists of nine (9) planets, 
their 31  known satellites, thousands of planetoids and comets, and billions of 
meteorites. 

A scale model of the solar system's ten (10) most important bodies (sun 
and nine (9) planets) where 10,000 miles equals 1 inch, would find the sun about 
7.5 feet in diameter and the Earth 3/4 inch in diameter placed 775 feet away. 
Mercury would be 1/3 inch in diameter, 300 feet away. Jupiter is the largest 
planet and would be represented by a 9-inch sphere about 3/4 mile from the 
sun. Pluto is the farthest out and would be about 1/2 the size of the Earth at 
5-1/2 miles from the sun in the scale model. 

The period of the planets rotation about the sun varies from 88 days for 
Mercury to 248 years for  Pluto. The first  person to  adequately state the laws 
of planetary motion was  Johannes Kepler. These laws as originally stated are 
given below: 

Law I The orbit of any planet is  an ellipse with the sun at one focus. 

Law I1 The line joining sun and planet will sweep over equal areas in 
equal intervals of time. 

Law 111 The square of the period of revolution of any planet is equal to 
the cube of its mean distance. 

Kepler's laws were originally applied to the relative motion of any planet about 
the sun. It has been shown that these three (3) laws can be generalized to des- 
cribe the relative motion of any two (2) mutually revolving bodies. 
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In order to  determine the problems of steering a narrow-beam LASER for 
communications with a spacecraft on a planetary mission, one must consider 
the relative motion of the planets to the earth in order to determine the optimum 
launch time for intersection of the planet and spacecraft. It is difficult to show 
the entire solar system on a fixed-scale model that can be placed in a report. 
However, planetary distances and periods can be summarized in table form as 
shown in Table I. 

Planet 

Mercury 

Venus 

Earth 

Mars 

Jupiter 

Saturn 

Uranus 

Neptune 

Pluto 

Table I 

Mean Distance 
In Miles  

Orbital 
Eccentricity 

36 x l o 6  
67 x l o 6  
92 x l o 6  

142 x l o 6  
483 x l o 6  
886 x l o 6  

1782 x l o 6  
2792 x l o 6  
3664 x l o 6  

.2056 

.0068 

.0167 

.0934 

.04 84 

.0557 

.0472 

.0086 

.2502 

Period 
(Years) 

.241 

.6 15 

1 

1.881 

11.862 

29.458 

84.013 

164.793 

248.430 

M a r s  is the object of the greatest popular interest because of the question 
of the possibility of supporting some form of life. 
ratio of periods for M a r s  and Earth is 1.88. M a r s  is best seen from Earth at 
the times of its opposition (when it is nearest to Earth) and oppositions of M a r s  
occur every 780 days. The opposition distance can vary from 34,600,000 miles 
to 62,900,000 miles due to the eccentricity of its orbit. The most favorable op- 
positions occur at intervals of 15 to 17 years  (as in 1939, 1956, 1971) and always 
in August o r  September for the Earth is nearest  Mars '  perihelion on August 28. 
The relative position of Mars' aphelion and perihelion is shown in Figure 1. 

Table I indicates that the 

The problem of launching a manned expedition to M a r s  f rom Earth must 
take into account the relative position of these two (2) planets a t  the time of 
launch. It is not the purpose of this paper to optimize the flight trajectory, but 
a manned mission to Mars would certainly have unique communications and 
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35,000,000 
MILES 

\ MAR'S 
\ APHELION 

EARTH'S 
ORBIT 

\ / MAR'S 
ORBIT 

Figure 1-Relative Position of Mar's Aphelion and Perihelion. 

tracking requirements. The ranges involved and the manned aspect of the mis- 
sion place unusual requirements for  two-way communications. It seems reason- 
able to assume that there would be a necessity for transmitting high-bit-rate 
telemetry from the spacecraft. In addition, continual tracking of the vehicle 
seems mandatory during periods of engine burn with the capability for high 
angular resolution. These two (2) requirements seem to point out the LASER 
as a potential source for communications and tracking, at least until such time 
as a highly maneuverable spacecraft is developed. Both the up-link and down- 
link must be considered. It will be shown that precise spacecraft velocity and 
angle information would be mandatory for  positioning a large diffraction- 
limited telescope o r  a LASER transmitter to a predetermined position in space. 

It is well known that a coherent optical beam will undergo some.dispersion 
through the atmosphere due to the non-linearity of the index of refraction. At 
this time, exact values of the amount of dispersion are not well known. It is 
important to consider this since a narrow coherent beam will be enlarged after 
going through the Earth's atmosphere. The beam will  bend away from the orig- 
inal ray path affecting the angular accuracy unless exact information concerning 
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the amount of bending is known. If one considers the atmosphere as a large 
number of concentric shells, with each shell having a slightly different index of 
refraction, it can be seen that the amount of beam spreading and bending is a 
function of the elevation angle of the LASER on earth. A LASER mounted on a 
deep-space vehicle pointed at Earth, will have an angle of incidence considered 
closer to perpendicular to the concentric shells for most cases. This is not 
true for a LASER on the Earth since the angle of incidence with the lower bound- 
aries of the atmosphere is a function of elevation angle of the LASER. 

-. 
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I. REFRACTION PRINCIPLE OF OPTICAL BEAM DEVIATION 

The principle of refraction is based on the fact that a beam of light crossing 
a boundary between two (2) media of different indexes of refraction will  be de- 
viated from the incident direction. The amount of deviation is proportional to 
the indexes of refraction of the two (2) media. 

If e l ,  8 ,  , and T~ are the angles which the beam direction makes with 
the normal and the index of refraction of the incident and refracted medium, then 
from Snell's law 

Thus, any change in 8 will  cause a change in 8,. Also 

- ( q 2  +A?,) s i n  ( e 2  + A B , )  - s i n e 1  

Expansion of 2 yields 

( ~ ~ t A 7 ~ )  ( s i n @ , $  AB, ~ 0 ~ 8 ~ )  = r l l s i n B 1  (3) 

It has  been assumed that @0, is a very small change due to a very small change, 
A?,, in 77,. Then 

s i n A e 2  2 A8,  

and 

Thus, from 3 one obtains 
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However, from Snell's law 

and 

When Equations 5 and 6 a re  substituted into 4, one obtains 

but 

It should be noted that 
neglected. Substitution of the above approximation into Equation 7 yields 

is extremely small compared to 722 and can be 

The light refracted will have a phase different from that of the incident 
light. For a medium having a definite thickness and for  a fixed angle of incidence, 
the phase variation of the refracted light will be a function of the index of re- 
fraction of the medium. 

Figure 2 represents a typical refractive situation. Regardless of whether 
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wavelength ure qm is 2 real  can A ,  be or  the complex represented medium and of by for Fig- the a ,dLY 
characteristic 2 x 2 matrix of the 
form 

d -- 
s i n  e 

In this case, 

q2 
02 

The amplitude transmittance, T, can be derived using the elements of 9 to obtain 

27 1 T =  

By multiplying numerator and denominator by the complex conjugate, T can be 
represented by 

For  this case, 
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Equation 11 can be written as 

where 

r 

and 

[x2 t y2] 

Therefore, if  the thickness of the medium is known and the wavelength of light 
is  known, it appears that the phase is a function of the index of refraction of the 
medium. The above equation does not represent the complete story of trans- 
mittance of a coherent light beam through the atmosphere, however, the changing 
index of refraction of the atmosphere with altitude does represent one of the 
major problem areas  in trying to position a narrow-beam LASER to a pre- 
determined position in space. 
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11. RETARDATION EFFECTS 

The effect of the changing index of refraction of the atmosphere is not taken 
into account when calculating the vector potential at a point due to a radiating 
source. The retarded vector potential is  derived assuming a straight line dis- 
tance from the source on the basis of integrating out time and substituting the 
point coordinates of the point a t  which the vector potential is to be calculated. 
This retarded vector potential is necessary to account for the fact that electro- 
magnetic waves travel with a finite velocity. For  a charge-free region, Maxwell's 
equations can be written in the following form: 

where 

4 -+ 
J f J '  t 3'' 

and j* is due to the source and 3" = PE 

Since the divergence of the curl  of a vector is identically zero, Equation 18 can 
be derived from the curl of a vector A, or 

4 

B = O x 1  

A is the famous retarded vector potential of electromagnetic theory. Substitution 
of Equation 19 in Equation 16 yields 

O x  (z+$) = 0 
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Since the cur l  of the gradient i s  identically zero 

Equation 21 gives r ise  to the Maxwell-Lorentz condition 

Thus, the electric field is a function of both a scalar and a vector potential. Ex- 
pansionof Equation 15 to 

and substituting Equation 22 yields 

Equation 23 leads to the Lorentz condition 

If Equations 22 and 24 are substituted into Equation 17,  one obtains 

10 



Equation 23 yields for the Lorentz condition and CT = 0 

V2 - p e  ( a 2 / a t 2 )  is denoted as the four-dimensional D'Alembertian operator 

Equations 24, 25, and 26 can then be written as: 

-t 34 at V . A  = - 

.e r - -  
E 

The D 'Alembertian is essentially a four-dimensional Laplacian and indicates 
that for  radiation one must take into account the dimension of time in addition 
to the three spacial dimensions. 

If Equations 27 and 29 are multiplied by c , and Equation 28 by i, then Equa- 
tion 27 is the four-dimensional divergence operator operating on ( c i ,  i4) . 

If we denote the vectors % and 'P by 

then 
+ 

ma) = - P  

V * @  = 0 

03 = 0 

11 
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where # is defined as 

-+ -t 

A '  = A - V $  

It is assumed that Q decreases at least as fast a s  1/R as R goes to  infinity. In 
addition, Equation 32 is satisfied if 

When Green's Lemma i used t operate on $ and Q j  , the four-dimensional and 
three-dimensional integral expressions result. 

but 

n$ = 0 

1 4 = 5  

- 0Qj - Pj 

Substitution of 34, 35, and 36 into 33 yields 

1 

(34) 

(35) 

(37) 

If Equation 37 is integrated around an infinite sphere and an infinitesimally 
small sphere at R = 0, the potential function at  the center of the infinitesimal 
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sphere is the only term that remains on the right half'side of Equation 37. This 
yields 

If the time variable is integrated out of 38, one obtains 

where @, is taken at the time t = to - ( R / c )  and the observation point is a dis- 
tance R from the source. If we let 6j = p J f  , Equation 39 expresses 
the retarded vector potential A .  

and@.  
1 

The application of Equation 40 depends on the distribution of the current 
sheet J, but the retardation effect must be taken into account. The E and H 
fields can be obtained knowing A f rom Maxwell's equations. It should be noted 
that R is assumed a s  the straight line distance from an infinitesimal radiator 
having current density J. 

Schelkunoff has  introduced fictitious magnetic charges in his solution for  
the electric and magnetic fields. This is to  account for  the situations where 
the radiation is due to  an electric field and/or a magnetic field. In his solution, 
E and H are broken up into two (2) components. The individual solutions are 
then added together through the Lorentz condition to  give the two (2) vector 
potentials A and F ; where 

-+ 
A 

4 

F 
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where for f a r  field solutions 

J = electric current density of source 

M = magnetic current density of source 

/L = permeability of medium 

E = permittivity of medium 

w = angular frequency of source 

k = phase constant = %/A 
r = distance from center of source coordinate system to the point where 

A and F a r e  to be calculated 

r '  = distance from center of source coordinate system to infinitesimal 

$ = cos-1 ( y '  * ;A r 'I I 'I) a s  shown inFigure 3 

radiating area 

The radiation vectors N and L 
are defined a s  

P 

It should be pointed out that Equa- 
tions 43 and 44 are derived on the 
basis of the observation point 
staying fixed with respect to the 
source during the time r/c. On 
this basis, for  far field considera- 

tions, it is assumed that the point is always far enough away from the source 
that the fields can be considered as plane waves. 

X 

Figure 3-Geometry for Radiation Vectors. 

A narrow beam LASER transmitting either from Earth to a deep-space 
vehicle or from a deepspace vehicle to Earth is an unusual situation due to 
the refractive properties of the atmosphere and the narrow beamwidths involved. 
Expressions 43 and 44 assume that IC, is fixed for  a particular geometry. If the 
position of the observation point changes more than a beamwidth perpendicular 
to the beam during the time r/c , then COS 4 relative to the observation point is 
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not fixed during the time r/c. The radiation vectors 43 and 44 can be considered 
independent of the motion of the spacecraft if the observation point at which the 
fields a r e  desired is selected to coincide with the spacecraft position at the time 
t o  + ( r/c)where to  is the time of radiation from the source and r is the range 
of the spacecraft at the time t o  + ( r /c ) .  

In order to appreciate the problem of propagation times to spacecraft on 
planetary missions, Table I1 gives the minimum and maximum propagation times 
to some of the closer planets. The minimum and maximum times a r e  due to the 
orbital eccentricity of the various planets. 

Table I1 

Propagation Times to Planets 

Planet 

Mercury 

Venus 

M a r s  

Jupiter 

Saturn 

Uranus 

~~ 

Max 

11.53 min 

14.3 min 

21.1 min 

5.16 min 

1.46 rnin 

2.8 rnin 

M in 

5.08 min 

2.3 min 

4.35 min 

35 min 

1.18 hr .  

2.52 hr .  

The times above have some uncertainty associated with them due to the 
e r r o r  magnitudes in the velocity of light and position of the planets. Neptune 
and Pluto have been omitted due to the great distances involved. 

There a r e  very many problem areas to  be resolved before a manned mis- 
sion to even Mars will be feasible. However, it appears that these a r e  not in- 
surmountable, and in this respect, it is necessary to consider communications 
systems for supporting such a mission. All  of the classical laws of electro- 
magnetic wave theory apply to the transmission of coherent light at great ranges, 
however, the effects of atmospheric refraction will probably have to be measured 
experimentally before a narrow beam LASER can be considered for  deep-space 
applications . 
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ID. SPACIAL BEAM OFFSET CONSIDERATIONS 

The propagation times and Fraunhoff diffraction pattern must be tied to- 
gether to insure that the beam will intercept the spacecraft telescope in order 
to optimize communications at long ranges. In the case of a LASER transmitting 
system operating in conjunction with a large receiving telescope, one is usually 
concerned with 2 relatively narrow beams. The power density in the far field 
from a circular aperture can be expressed as a general equation for  the Fraun- 
hoff diffraction field as 

J, ( k R s i n 8 )  e 
s r  = K[ k R s i n 8  ] ‘ O S 4 2  (45) 

where K depends on geometry and the field configuration B is the angle off of 
the beam axis 

k = phase constant 

R = radius of the aperture. 

Equation 45 is plotted in Figure 4 for the main beam and first two (2) sidelobes. 
This plot is made in the focal plane of the aperture. 

Figure 4 assumes very small angles so that cos4 (8/2) - - 1. For  this 
approximation 

1 p, (kR s i n 6 q  
I I, I . I 

kR sin 6 

7 ’  t 
2 6  

Figure 4-Plot of Fraunhoff Diffraction Pattern. 
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The first zero of J ,  (kR sin e )  occurs when 

kRB 3.83 (47) 

or 

h e = 1 . 2 2 5  

where 

and 

D = 2R 

Equation 47 is the approximate expression for  the half angle of the primary 
beam in the Fraunhoff diffraction field for a circular source. 

When considering present missions using microwave antenna systems, 
Equations 41 and 42 can be used straightforward for  a particular geometry by 
replacing t in 5 and by to - ( r/c) where r is the range to the observation 
point (spacecraft) P at  the time to .  For  these systellis, it  can be assumed fo r  
f a r  field considerations that the change in IC, during the one-way propagation 
time is not significant to affect the signal power in the far field at the spacecraft. 

Consider an 85-foot circular aperture emitting at a frequency of 2300 Mc. 
Using the approximation that 0 = 1.22 (h /D)  results in approximately a 3 db 
beamwidth of 6 x radians. 

The diameter of the area subtended by this angle at 5 x l o7  miles is 
300,000 miles. A spacecraft moving at  5 miles/second perpendicular to the 
electrical axis of the aperture would move about 1400 miles during the propaga- 
tion time of the wave from the source to the spacecraft. Thus, if the center of 
the Fraunhoff diffraction pattern is centered on the spacecraft at t = to  ; then 
at t = t o  + ( r / c )  , the radiation pattern will still be maximized at the spacecraft 
fo r  all practical purposes. Thus, for present systems, the retarded vector po- 
tential as defined is adequate to determine the electric and magnetic fields at 
the spacecraft for real time antenna positioning. 
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Future systems fo r  deep manned space missions, for example, the f i rs t  
manned mission to M a r s ,  might utilize narrow beam LASERS for ground-to- 
spacecraft and/or spacecraft-to-ground communications, Later missions might 
utilize highly maneuverable spacecraft with a very accurate guidance system in 
order to eliminate the tracking requirement. However, large information band- 
widths would seem a necessity from spacecraft-to-ground, even in later missions. 
For this reason, it is interesting to consider one aspect of the problem of posi- 
tioning the beam. Assume a LASER with a 0.1 sec beamwidth operating at 5 x 1014 
cps. For the sake of isolating one problem, assume negligible atmospheric re- 
fraction and turbulence. The diameter of the area subtended by this angle at 
5 x l o 7  miles is approximately 25 miles. A space vehicle moving at 5 miles/ 
second perpendicular to the beam would travel approximately 1,350 miles during 
the one-way propagation time of an electromagnetic wave. Thus, if the vehicle 
were moving perpendicular to the LASER beam axis, the LASER would have to 
be pointed ahead of the vehicle trajectory approximately 54 beamwidths. Future 
communications systems utilizing optical LASE Rs must develop accurate methods 
for predicting spacecraft position in order to  insure that the main lobe of the far 
field pattern intercepts the spacecraft telescope. 

Figure 5 indicates the relative position of a LASER and a spacecraft for two (2) 
different times t and t, . At the time t 1 ,  the spacecraft is at  position 1 and at 

/ 
/ ’  
/ ’/ // 

/ 

4 

LASER 

VELOCITY 
VECTOR 

Figure 5-Spacecraft - LASER Geometry. 
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the same time the LASER transmits a short pulse. Assume the coordinates of 
the spacecraft with respect to the LASER at t , are 

It is assumed that the spacecraft at position 1 is directly on line with the elec- 
trical axis of the telescope. A new set of reference axes can now be placed at 
Z = 2 ,  
erence axis 2 a r e  

R at the time t ,  where the coordinates of the spacecraft at t ,  in ref- 

If the velocity components of the spacecraft are dX/dt , dY/dt, and dZ/dt, then 
at a time t , the spacecraft will be at the positioli coordinates relative to the 
frame of reference 2 

where 

at = t ,  - t ,  

In this case, t, is the one-way propagation time from the LASER to the space- 
craft. Originally, the spacecraft was at a slant range of R, ( 2 , )  relative to the 
LASER at t ,  = 0. At  the time t,, the spacecraft is at the new slant range of 
R, t (dZ/dt) t ,  relative to the LASER. It is imperative that for reliable com- 

munications, the intersection of the beam and spacecraft occur at the same time 
t 2.  For this case 

where 
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Thus, the beam of a very narrow LASER must be positioned at the time ( t o )  the 
source radiates to a point in space determined by not only the coordinates of the 
spacecraft at the time t o ,  but also the velocity components of the spacecraft to 
insure that at the time t , the maximum of the main lobe of the far field pattern 
intersects the spacecraft. Consequently, it will be necessary that predicted in- 
formation on spacecraft range, velocity and angle be extremely accurate for a 
reliable communications system. 

The only case where this would not be a problem is when dX/dt = dY/dt = 0 
In this case, the spacecraft is flying a trajectory which is on line with the axis 
of the LASER beam and a spacial offset is not required. Due to the trajectory 
that a spacecraft must fly on a planetary mission and due to the ground station 
location and changing aspect angle, this geometry would not occur for the entire 
duration of a mission. The worst case situation occurs when the spacecraft is 
flying nearly perpendicular to the axis of the telescope. In this case, dZ/dt 0, 
and the slant range R, is approximately equal to R, . Thus, one becomes con- 
cerned with the values of dX/dt and dY/dt . 

For the purpose of determining spacial offset, either dX/dt o r  dY/dt can be 
taken as zero. If dZ/dt and dY/dt = 0 ,  then the spacecraft is flying essentially 
parallel to the X axis. If a ,  /3, and P a re  the angles between the spacecraft veloc- 
ity vector and the X ,  Y, and Z axes of reference frame 2 respectively, then at  
time t ,  ; 

dY 

where 

a ,  - - c o s - ' d t  
v 

dX 

v 
- 

p, - - cos-'* 

dZ 
d t  - p1 - c o s - l v  

= f l -  

(53) 

(54) 

(55) 
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In order to  simplify the problem without destroying the significance, it is assumed 
that da/dt = dP/dt = d&/dt = 0 during the one-way propagation time of the rfwave. 
If t is the time when a wave front emanates from the LASER, then at t 

P, = P , ?  

The steering of a LASER beam to a deep-space vehicle must take into account a 
factor that has  not been a serious problem with standard microwave antenna 
systems. This is the beam spacial offset required as a function of the dynamics 
of the spacecraft. Due to the small angles 0 involved, the average diameter of 
the area subtended by the main lobe of the Fraunhoff diffraction field can be 
approximated by 

ave. D (57) 

where R, and R, are the ranges at the time the source radiates and the range 
after the one-way propagation time to the spacecraft. The only case where 
R,  = R, is when dZ/dt = 0.  Equation 57 represents an average diameter of 
the main beam. 

Figure 6 represents the geometry of a spacecraft relative to the LASER at 
the ranges R, andR2 . 

, 
0 
/ 

Figure 6-Relative Motion of Spacecraft with Respect to 
the LASER at Ranges 'R, and R,. 
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The radial velocity component at the range R, is equal t o  V cos B,, while the 
tangential velocity component is V sin 0,  At R,, these a r e  respectively, V cos 8 ,  
and V sin 8, where it is assumed that V, = V, = V . The angle II, a s  shown in 
Figure 6 is equal to 

The distance R in Figure 6 can be obtained from the law of cosines as 

R = 1/R: + Rl - 2R, R, cos $J 

For deep space considerations 

then, 

R 2 R, i 2  - 2 cos II, 

However, R is also approximated by, 

(59) 

where t, f t1/2 is the average propagation time and t ,  
Equations 60 and 61 yield 

(R,/r); t, = (R,/c). 

It can be seen from Equation 62 that for very small angles, 
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The spacecraft range at t 2  is 

During the time t 
approximately 

t t J2 , the spacecraft’s slant range will change by 

ARr - - v 

In addition, during the same time the spacecraft will move perpendicular to the 
beam axis an amount equal to 

The diameter of the a reas  subtended by a narrow-beam LASER was approximated 
in Equation 57 as 

where R ,  + R2/2 was the average range to the target during the one-way propaga- 
tion time and @ is the half angle of the main beam, but it is also used as an ap- 
proximation of the 3 db beamwidth. In order to determine the spacial offset 
required of the LASER beam, one must take the ratio of Equations 66 to 57. 
Spacial offset in beamwidths is 
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It should be nQticed that R ,  + R2/2 can be written as ct  , + c t  2/2 . Substitution 
in Equation 67 yields 

v s i n  8, 
B =  ce 

Equation 68 is a very simple expression, independent of range. The spacial off- 
set is essentially a function of the spacecraft velocity, aspect angle, and the 
width of the main beam in the far-field pattern. 

Equation 68 is plotted as a function of aspect angle in Graphs 1 through 7,for 
a spacecraft velocity of 10,000 M/sec. It can be seen from Graph 1 that conven- 
tional microwave systems effectively communicate with a spacecraft in real 
time position. On the other hand, Graphs 2, 3 ,  and 4 indicate that a LASER has 
to be off set considerably in beamwidth particularly for aspect angles approaching 
90" 

The complete problem from the retardation point of view involves both the 
transmitting LASER and the receiver telescope. The LASER on the ground o r  
on a relay platform must be offset according to Equation 68. In addition, a 
diffraction-limited telescope on the spacecraft or ground must be able to posi- 
tion the telescope very accurately in order to intercept the maximum of the 
far-field radiation pattern of the LASER transmitter with the maximum of the 
diffraction pattern of the telescope. 

A LASER having a beamwidth of 10 seconds of arc requires the least offset 
of those considered. On the other hand, a 0.1 second LASER beamwidth would 
require as much as 67 beamwidths of spacial offset for  90" aspect angles. Graphs 
5, 6, and 7 are plots of the spacial offset required for  a receiving telescope. For 
example, an earth-based telescope receiving from a LASER on a spacecraft has 
a similar problem to the LASER transmitter. Large telescopes have very narrow 
beamwidths and in order to maximize the received energy, it is necessary that 
the center of the telescope diffraction pattern be positioned to  coincide with the 
maximum of the LASER diffraction pattern. Graph 7 indicates that a 100 cm 
telescope is comparable to a LASER having a beamwidth of 1 second of a r c  as 
far as spacial offset is concerned. 

25 



IV. SUMiYIARY 

1 -  

A LASER has certain advantages over microwave systems for  communications 
at  planetary distances. These aspects were not covered in this paper, but an 
attempt has been made to  present one of the problem areas involved in steering 
either an earth-based LASER to a deep-space vehicle o r  steering a LASER on 
a relay station to a deep-space vehicle. It has  been shown that for very narrow- 
beam LASERS it is necessary to apply a spacial beam offset to the transmitter 
in order that the energy in the main lobe of the diffraction pattern intersects the 
spacecraft. The amount of offset required is essentially independent of range 
and depends on spacecraft velocity, aspect angle, and the beamwidth of the 
LASER. 

In order to properly position the LASER beam, velocity and angle information 
will have to be exceptionally accurate and extremely accurate servo systems will 
be required. It well may be that a completely new system will have to  be invented 
in order to s teer  a narrow-beam LASER. The state-of-the-art is advancing at 
such a rate in LASER technology that the problems that seem insurmountable 
today will most iikely be solved in the near future. 
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